Hope Valley Climate Action

Decarbonisation and Retrofit: Managing Risks

25 April 2022

Dr Peter Rickaby

Energy and Sustainability Consultant, Savills
Chair, BSI Retrofit Standards Task Group
Honorary Senior Research Fellow, University College London

Decarbonisation and Retrofit

- Why retrofit?
- Where does retrofit go wrong?
- Decarbonisation principles
- Each Home Counts
- Publicly Available Specification (PAS) 2035
- Retrofit Quality Assurance
- Questions and discussion

"Retrofit is not rocket science – but it is complicated"

Rick Holland, Innovate UK

Why Retrofit?

- Homes contribute 30% of UK GHG emissions
 - The UK stock is 27 million homes
 - 80% of existing homes will still be standing in 2050
- Electrifying heat and hot water would require
 - 30x as much offshore wind power (or equivalent)
 - 12x as much wind power with heat pumps (CoP 2.5)
 - 4 x as much wind power with retrofit
- No zero carbon homes without demand reduction
 - Say 25 million retrofits over 30 years @ £25,000
 - 5 retrofits per minute!
 - Total cost £625 billion

Where does retrofit go wrong?

- Lessons from *Retrofit for the Future* (2009-2014)
- At corners, junctions, edges and interfaces
 - Physical connections between building elements
 - Interfaces between building fabric and building services
 - Interfaces between building services and occupants

Ventilation

- Critical to the health of the building and of the occupants
 - No insulation without ventilation
- Poorly designed, installed, commissioned and maintained
 - Switched off by occupants! (perceived as noisy, draughty, expensive)

Moisture

Most risks are moisture-related

Zero Carbon Principles

- 1. Don't make assumptions about current unknowns
 - The emissions factor for electricity in 2050
 - The characteristics and costs of local energy storage
 - The extent of hydrogen substitution in the gas grid
 - The extent of penetration of low carbon heat networks
- 2. Adopt a 'no regrets' energy demand-reduction strategy
 - Decarbonisation and retrofit are not alternatives
 - Grid decarbonisation is impossible without demand reduction
 - Allow time for investment in the electricity network
 - Simultaneous transitions to domestic HPs and to EVs are impractical

Zero Carbon Principles

- 3. Focus first on fuel poverty, then on emissions reduction
 - Because cold households don't care about emissions
- 4. Adopt the 'fabric first' approach
 - 1. Improve the building fabric (and ventilation) to reduce demand
 - 2. Improve and decarbonise building services to satisfy demand efficiently
 - 3. Use renewable energy technologies to 'top up' to zero carbon
- 5. Establish a staged whole-house improvement plan
 - For each dwelling
 - Very few householders or landlords can afford to do retrofit all at once

Zero Carbon 1-2-3

1 Improve the building fabric to reduce demand

- Improve the whole building envelope: walls, roofs, floors, openings
 - No insulation without ventilation
- Aim to minimise or eliminate fuel poverty
 - HMG's current EPC band C target (SAP 69) is inadequate, does not provide affordable warmth
 - Consider the best practice Passive House Enerphit standard
- Some traditionally constructed homes cannot be adequately insulated
 - Roof-mounted solar PV with batteries may be an alternative
 - Other dwellings should receive deeper retrofit, to compensate
 - Aim for average 60% reduction in energy demand, across the stock
 - Consistent with 4 x expansion of offshore wind power (Heat & Buildings Strategy)

Zero Carbon 1-2-3

2 Improve the building services and controls

- Focus on heating, hot water and cooking
 - Ventilation already done in Stage 1, lighting driven by EU standards
- Remove fossil fuels options are
 - Individual ASHPs, communal GSHPs (for blocks and small estates), low carbon heat networks (in some urban areas)
- Get dwellings 'zero carbon ready'

3 Add local renewable energy to achieve zero carbon

- Options will include:
 - Solar PV systems (with battery storage)
 - Solar thermal systems (for hot water)
 - Community wind power (local or remote)
 - May be constrained by the available roof area

Each Home Counts

Dr Peter Bonfield, OBE, FREng

December 201

Industry-led review

- Sponsored by BEIS and MHCLG
- Led by Peter Bonfield (BRE)
- Multiple work-streams
- Hundreds of people involved

Twenty-seven recommendations

- Consumer protection
- Advice and guidance
- Quality and standards
- Skills and Training
- Compliance and Enforcement
- Insulation and building fabric
- Smart meters
- Home energy technologies
- Social housing

Implementation

- Coordinated by a cross-industry
 Implementation Board
- BEIS support > £3 million

Retrofit Standards

The BSI Retrofit Standards Framework

PAS 2035

& Industrial Strategy

PAS 2035 Summary

- Risk assessment
 - Based on pre-assessment (triage)
 - Determines the Path (A-C) through the PAS
- Required qualifications depend on assessed risk
 - All projects must have a Retrofit Coordinator
 - Professional qualification required for other roles
- Design
 - Requirements depend on the risk Path (A-C)
 - Improvement option evaluation and medium term plans required (B, C)
 - Additional requirements for traditionally constructed and protected buildings (C)
- Ventilation
 - Assess existing, upgrade if inadequate or will become inadequate on retrofit
- Installation
 - Must comply with PAS 2030:2019 (requires installers to have certified competence)
- Evaluation
 - Confirms agreed outcomes, investigates discrepancies

Questions and discussion

Hope Valley Climate Action

Decarbonisation and Retrofit: Managing Risks

25 April 2022

Dr Peter Rickaby

Energy and Sustainability Consultant, Savills
Chair, BSI Retrofit Standards Task Group
Honorary Senior Research Fellow, University College London
peterrickabyconsultancy@gmail.com